Kato square root problem with unbounded leading coefficients

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square Root Problem of Kato for the Sum of Operators

This paper is concerned with the square root problem of Kato for the ”sum” of linear operators in a Hilbert space H. Under suitable assumptions, we show that if A and B are respectively m-scetroial linear operators satisfying the square root problem of Kato. Then the same conclusion still holds for their ”sum”. As application, we consider perturbed Schrödinger operators.

متن کامل

The solution of the Kato square root problem for second order elliptic operators on R n

We prove the Kato conjecture for elliptic operators on Rn. More precisely, we establish that the domain of the square root of a uniformly complex elliptic operator L = −div (A∇) with bounded measurable coefficients in Rn is the Sobolev space H1(Rn) in any dimension with the estimate ‖ √ Lf‖2 ∼ ‖∇f‖2.

متن کامل

The ergodic problem for some subelliptic operators with unbounded coefficients

We study existence and uniqueness of the invariant measure for a stochastic process with degenerate diffusion, whose infinitesimal generator is a linear subelliptic operator in the whole space R with coefficients that may be unbounded. Such a measure together with a Liouville-type theorem will play a crucial role in two applications: the ergodic problem studied through stationary problems with ...

متن کامل

Kato’s Square Root Problem in Banach Spaces

Abstract. Let L be an elliptic differential operator with bounded measurable coefficients, acting in Bochner spaces Lp(Rn;X) of X-valued functions on Rn. We characterize Kato’s square root estimates ‖ √ Lu‖p h ‖∇u‖p and the H-functional calculus of L in terms of R-boundedness properties of the resolvent of L, when X is a Banach function lattice with the UMD property, or a noncommutative Lp spac...

متن کامل

Nonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients

We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2018

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/14224