Kato square root problem with unbounded leading coefficients
نویسندگان
چکیده
منابع مشابه
Square Root Problem of Kato for the Sum of Operators
This paper is concerned with the square root problem of Kato for the ”sum” of linear operators in a Hilbert space H. Under suitable assumptions, we show that if A and B are respectively m-scetroial linear operators satisfying the square root problem of Kato. Then the same conclusion still holds for their ”sum”. As application, we consider perturbed Schrödinger operators.
متن کاملThe solution of the Kato square root problem for second order elliptic operators on R n
We prove the Kato conjecture for elliptic operators on Rn. More precisely, we establish that the domain of the square root of a uniformly complex elliptic operator L = −div (A∇) with bounded measurable coefficients in Rn is the Sobolev space H1(Rn) in any dimension with the estimate ‖ √ Lf‖2 ∼ ‖∇f‖2.
متن کاملThe ergodic problem for some subelliptic operators with unbounded coefficients
We study existence and uniqueness of the invariant measure for a stochastic process with degenerate diffusion, whose infinitesimal generator is a linear subelliptic operator in the whole space R with coefficients that may be unbounded. Such a measure together with a Liouville-type theorem will play a crucial role in two applications: the ergodic problem studied through stationary problems with ...
متن کاملKato’s Square Root Problem in Banach Spaces
Abstract. Let L be an elliptic differential operator with bounded measurable coefficients, acting in Bochner spaces Lp(Rn;X) of X-valued functions on Rn. We characterize Kato’s square root estimates ‖ √ Lu‖p h ‖∇u‖p and the H-functional calculus of L in terms of R-boundedness properties of the resolvent of L, when X is a Banach function lattice with the UMD property, or a noncommutative Lp spac...
متن کاملNonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients
We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2018
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/14224